Ion pair-induced conformational motion in calix[4]arene-strapped calix[4]pyrroles.

نویسندگان

  • Sung Kuk Kim
  • Vincent M Lynch
  • Benjamin P Hay
  • Jong Seung Kim
  • Jonathan L Sessler
چکیده

In order to understand the still-poorly understood interplay between calix[4]arene conformations and cation and anion recognition in multicomponent systems, the ion pair receptors 1 and 2 were synthesized. In solution and in the solid state, the calix[4]arene subunit of receptor 1 adopts a cone conformation, while that of 2 interconverts between the cone and the partial cone conformation. These geometric features differ from previous systems where the calix[4]arene moiety was locked in the 1,3-alternate conformation. A combination of 1H NMR spectroscopic analyses and single crystal X-ray diffraction studies reveal that receptor 1 binds the fluoride and the chloride anion via significantly different binding modes, displaying, for instance, 1 : 1 and 2 : 3 binding stoichiometries with CsF and CsCl, respectively. In the case of 2, the conformation of the calix[4]arene constituent of 2 is highly dependent on the size and quantity of anions present. For example, upon treatment of 2 with the fluoride anion (as both the TBA+ and Cs+ salts), the calix[4]arene unit coexists as cone and partial cone conformers that are inter-convertible. In the presence of excess CsF, the aromatic rings of the calix[4]arene subunit becomes locked in the pinched cone conformation with the result that an ion pair-mediated coordination polymer is formed. In the presence of excess CsCl, the calix[4]arene unit of 2 adopts only the partial cone conformation stabilized by aryl CH-anion hydrogen bonding interactions. The present systems constitute a rare set of related receptors wherein the effects of conformational changes are so tightly coupled with ion recognition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Created Using the Rsc Communication Template (ver. 2.1) - See Www.rsc.org/electronicfiles for Details

Calix[4]pyrroles such as meso-octamethylcalix[4]pyrrole 1 have been extensively studied as anion and ion-pair receptors over recent years. Subsequently ‘strapped’ calix[4]pyrroles, pioneered by Lee and Sessler, have been synthesised that contain a single linker between distal meso-positions. These compounds have increased 15 affinity for anions relative to the parent macrocycle. Recently there ...

متن کامل

Instructions for use Title

A photoresponsive ion carrier based on calix[4]arene was synthesized for the control of Na+ flux across lipid bilayer membranes by visible light. Calix[4]arene was chosen as a basic skeleton of a photoresponsive ion carrier because its ether derivatives are known to act as Na+ ion carriers in lipid bilayer membranes. For the synthesis of a photoresponsive carrier, dimethylaminoazobenzene was in...

متن کامل

Discrimination of methylammonium from organic ammonium ions using ion-selective electrodes based on calix[4]arene-crown-6 conjugates.

Calix[4]-bis-2,3-naphtho-crown-6 can be used to discriminate between methylammonium and other organic ammonium ions. An electrode based on this ionophore, potassium tetrakis(p-chlorophenyl)borate (20 mol% relative to the ionophore) as an ionic additive and bis(2-ethylhexyl) sebacate as a solvent mediator in a poly(vinyl chloride) membrane matrix, displayed higher selectivity for methylammonium ...

متن کامل

Calixarene-based Photoresponsive Ion Carrier for the Control of Na + Flux across a Lipid Bilayer Membrane by Visible Light

A photoresponsive ion carrier based on calix[4]arene was synthesized for the control of Na+ flux across lipid bilayer membranes by visible light. Calix[4]arene was chosen as a basic skeleton of a photoresponsive ion carrier because its ether derivatives are known to act as Na+ ion carriers in lipid bilayer membranes. For the synthesis of a photoresponsive carrier, dimethylaminoazobenzene was in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical science

دوره 6 2  شماره 

صفحات  -

تاریخ انتشار 2015